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ABSTRACT 

We construct area-preserving real analytic diffeomorphisms of the torus 

with unbounded growth sequences of arbitrarily slow growth. 

Given a smooth compact manifold M, consider the group Diff(M) of diffeo- 

morphisms of M. For every f E Diff(M) we define the growth sequence of 

S: 
Fn(f) = max(maxlidxfnil'm~ n E N, 

where fn is the n-th iteration of f ,  f -n  is the n-th iteration of f - 1  and ]Idxfl] 
is the operator norm of the differential of f at the point x E M. Conjugations 
of f in the group Diff(M) generate equivalent growth sequences: 

c(g)Fn(g-lfg) ~_ Fn(f) _~ C(g)Pn(g-lfg), g E Diff(M),n E N. 

The asymptotics of the growth sequence is a basic dynamic invariant (see [3]). 
D'Ambra and Gromov [1, 7.10.C] proposed to study the behavior of growth 
sequences for various classes of diffeomorphisms. In particular, it is interesting 

to find examples of unbounded growth sequences of slow growth (see also the 

references in [1, 7.10.C]). We call the diffeomorphisms generating such growth 
sequences the slow diffeomorphisms. 

Recently, Polterovich and Sodin [5] obtained several results on the growth 

sequences of smooth order-preserving diffeomorphisms of the interval [0, 1]. In 

particular, they proved [5, Theorem 1.7] that for any sequence {an} of positive 

Received April 13, 2003 

277 



278 A. BORICHEV Isr. J. Math. 

numbers tending to infinity, there exists a Ca-smooth diffeomorphism f,  f 7~ Id, 
such that 

liminf Fn(f) < 1. 
n ~ o o  a n  

On the other hand, a simple argument (see [5]) shows that for any diffeomor- 

phism f ¢ Id, 
1 

- -  rn(s---5 < oo. 
n > l  

Furthermore, Polterovich proved [4, Theorem 1.3] that for every 0 </3 < 1, 

there exists an area-preserving real analytic diffeomorphism f of the torus such 
that 

FT,(f) _< Cn # logn, 

lira sup ~ > 0. 
n - - + o o  

In this note, we improve somewhat the result of Polterovich by producing 

area-preserving real analytic diffeomorphisms of the torus with arbitrarily slowly 
growing unbounded growth sequences. 

THEOREM: Let ~ be a positive increasing (unbounded) function on ]R+ such 

that ~(x) = o(x), x ~ oo. There exists an area-preserving real analytic diffeo- 

morphism f of the torus such that 

f r n ( f )  < ~(n), 
( 1 )  . • r ° ( s )  [ h m s u P n _ + o  o ~(n) > 0. 

For some related questions on the asymptotics of diffeomorphisms with fixed 
points see [4]. Other recent results on the behavior of the growth sequences are 
in [2], [5]. 

Proof of the Theorem: We represent the torus as the product [0, t) × [0, 1), 
and define, as in [4], 

f (x ,  y) = ({x + a}, {y + cF(x)}), x, y • [0, 1), 

for a E k c E (0, +co), and a real analytic 1-periodic function F: IR -+ ]~; here 

{.} stands for the fractional part. Then 

(1 01) 
d x f =  cF'(x) ' 

and f is an area-preserving real analytic diffeomorphism of the torus. 



Vol. 141, 2004 SLOW AREA-PRESERVING DIFFEOMORPHISMS OF THE TORUS 279 

Define the Weyl sums 

N - 1  

(2) W ( N , x , a )  = E F'(x + n(~). 
n-~O 

We have 

and 

1 0 )  N > 1, 
dxfN = cW(N,x ,a )  1 ' - 

1 O) N > I .  
d z f - N  = - c W ( N , x -  N(~,a) 1 ' - 

Therefore, for (1) to hold it suffices that F and a satisfy the following 

condition: 

W ( N , x , a )  
(3) 0 < lim sup max < oc. 

N--+ oc 0_<x<l ~(N) 

Up to now our proof has repeated that of Polterovich in [4]. The main 

difference of our argument is in the way of estimating the Weyl sums (2). 

We are going to choose a sequence {qk}k>l, ql = 1, 

qk+-------!~ E N, k > 1, 
(4) 100qk 

and a sequence {rk}k>l, 

(5) 0 < r k  <exp(--qk), k_>l ,  

and define 
rk sin[27rqkx], F(x) = E 

k>l 

Then F is real analytic and l-periodic, 

xE]~. 

For a E ~ d e n o t e  

(6) 

F'(x) = E rk COS[27rqkX], X E •. 
k>_l 

N-1  
Ak(N' (~) -- E e2riqknc~ 

rt=O 

s ( g , a )  = E rk ReAk(g,(~), 
k>_l 

T(N,a)  = E rkIAk(N,(~)]. 
k>l 
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Then 
1 - e 2~riqk Na 

A k ( N , a ) - -  l_e2riqk a , qkaE]~ \Z ,  
N-1 

W(N,x ,a )=ErkRe[e2mq~XEe2~r iqkna  ] 
k>l n=0 

=ErkRe[e2~iqk~Ak(N,a) l ,  
k>l 

and property (3) follows from the inequalities 

S(N,a) 
(7) l i m s u p -  > 0, 

T(N,a) 
(8) lim s u p -  < ce. 

To get (7) and (8), we should first study the behavior of the sums Ak(N, a). 

Essentially, if the fractional part of qka is of order 1/M, then Ak (N, a) behaves 

like N / M  for N smaller than M, and is bounded by a constant times M for 

all N. After that,  in an inductive process we approximate ~ from below on 

an infinite sequence of points by a weighted sum of Ak(N, a),  with a lacunary 

sequence qk and a suitable a. 

Our first observation is as follows. Fix n > 1, suppose that  the numbers 

ql,. . .  ,qn+l satisfy condition (4), and define 

k ~ =  E q--~ EN. 
l<s<n qs 

CLAIM: Suppose that fl belongs to the interval 

(9) .An : { fl: an <~ qnfl_ kn <~ 2an }. 
qn+l qn+l 

Then 

1 qn+l (10) An 'fl)" - 1 < ~, 1 < N < 
- - - 1 0 0 q n '  

(11) ]An(N, fl)l < an+----E, Y > 1. 
qn 

Proof: Applying the Taylor formula to the function x ~ expix, we get 

Ix? 
le ~ - 1 - ixl < --4-' x E ~. 
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Using this inequality and the conditions /~ e An and qn/qn+l <_ 1/100, we 

obtain 

e2rri(q,~i3-k.. ) 1 (2 )2(qnZ- kn) 2 1 
- 1 < J < (12) ~ :  -k-7)- - ~ -Z -k--~ - 1-0" 

Furthermore, if 1 <_ N <_ qn+l/(lOOqn), then 

e 2~iN(q"~-kn) -- 1 
- 

Hence, 

(2r02N2 (qn~3 - kn) 2 
1 _< ~ L ' ~  

1 
= 7~N(qn3 - kn) <_ -~.  

A~(N,/3)N 1 = A T ( T - - ~ ) ) I  -- e 2rciN(q'~B-k'~) _ 1 _< -2'1 

[1 -- e2r iNq '~  I ~_ 2, N >_ 1. 

1 - e 2riNqnB 
JAn(N,~) [=  -1-e2~iq--------- ~ <_ 

and (10) is proved. 

Next, 

Therefore, 

Using (12), we get 

]An(N,/~)] _< 

1 < N < qn+----L 
- - 100qn ' 

Jl - e2~i(q.f~-k'O J " 

satisfies 

1 
(13) S P - I ( N j , ~ )  >_ - i - -~o(Nj )+ 2-P, 1 <_j < p ,  

3 < qn+-----2-1, N _ > 1, 
21r(qnfl -- kn)  qn 

and (11) is proved. | 

Now, to obtain (7) and (8), we define qk, rk, and a in an inductive process. 
Without loss of generality we assume that  ~(1) _> 2. Set S° (N ,  ~) = T°(N, /~)  = 

0, ql = 1, No = Mo = 1, A0 = [1,2]. On the induction s tepp  _> 1 we start with 

sequences {qj}l<_j<_p, {rj}l<_j<p, {Nj}o<_j<p, {Mj}o<_j<p, and the interval .Ap-1 

(defined by {qj}l<j<p),  such that  for every/~ E .Ap-1, the function S p - l ,  

S p - I ( N ' / ~ ) =  E r n R e / k n ( N ' t 3 ) '  
l <_n<p 
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and for every/3 E Ap-1 the fimction T p-l, 

Tp-I(N'I3) = E r~lAn(N,~)l, 
l~n(p  

satisfies 

(14) 

Isr. J. Math. 

and by (17), 
Np > max(Mp-l,Np-1). 

Set qp+l = lOOqpN;. Then we define Ap by the formula (9). It is easily seen 
that Ap C Ap-1. In the estimates to follow we assume that ~ E Ap, and hence, 
by the Claim, the estimates (10) and (11) hold with n = p. 

By (10) and (19), 

(20) 

By (16) and (18), 

(21) rplAp(N,~)l <_ rpN <_ ~(Y), 

and by (11) and (19), 

(22) 

1 1 
rp Re Ap( Np, ~) > -~rpNp >_ -~( Np). 

N <Np, 

rplAp(N,3)[ < lOOrpN v <_ 100(~o(Np) + 1), N > Np. 

TP-I(N,~) <_ 2 0 0 ~ ( N ) - 2  -p, N _> 1, 
1 

(15) TP-I(N,~) < ~-~(Mp_I), i >_ 1. 

(It is easy to verify that conditions (13)-(15) are fulfilled for p = 1.) 
By (6), for any ~, N, 

(16) IAp(N, fl)[ _< N, 

and we can choose rv satisfying (5) such that for all/3 E Ap-1, 

(17) r~(N + IAp(N,~)I) <_ 2 -p-l, l <_ N <_ max(Mp_x,Np_l). 

Since ~ is increasing and l i m N - ~  ~(N)/N = 0, we can find the smallest 
natural number Np such that ~(Np) <_ rpNp. Then 

(18) rvN < ~(N), N < Np, 

(19) ~(Np) < rpip <_ ~(Np) + 1, 
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Using that ~ is increasing, we conclude that 

(23) rp[Ap(N, 3)[ _< 100(~(N) + 1), N_> 1. 

Now, by (13) and (17), 

S p (Yj, 3) >_ S p-~ (Ny, 3) - rp [Ap (Nj, fl)] 

1 N 
_> 100~ ( j ) + 2  -p - l ,  l < j < p ,  

and by (15) and (20), 

1 
SP(Np,3) > rpReAp(Np,3) - TP-I(NB,3) > ~-~(Np)  + 2 -p-1. 

Thus, 
1 N _ _ S P ( N j , 3 ) > _ - ~ (  j ) + 2  -p - l ,  l < j < p .  

Furthermore, by (14) and (17), 

TP(N,3) = TP-I(N,3) + rp]Ap(g,3)] ~ 200¢p(g) - 2 -p + 2 -p-1 

= 2 0 0 ~ ( N ) - 2  -p - l ,  I_<N_<Mp_I ,  

and by (15) and (23), 

TP(N,3) = Tp-I(N,3) + rp[Ap(N,3)[ 

1 
< 100~(Mp_l ) + 100(~o(N) + 1), N _> 1. 

Since ~ is increasing, we conclude that 

TP(N,3) <_ 200~(g) - 1, g > Mp-1, 

and hence 

TP(N,3) <_ 200~(N) - 2 -p - l ,  N>_I .  

Finally, by (15), (21), (22), and by the condition that ~ is unbounded, there 
exists Mp such that 

1 
TB(N, 3) <_ ~-~qo(Mp), N >_ 1. 

Thus, the inequalities (13)-(15) hold with p replaced by p + 1. This completes 
the induction step. 
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The intervals .An constitute a nested family, 

A n  = {o:}, 
n>0 

1 
O : = Z - -  , 

k>l qk 

and all the inequalities in the induction process are valid with/3 = O:. 

We have 

S(N,a)  = lira SP(N,a), T ( N , a ) =  lim TP(N,a). 
p.-+ c~ p--+ ~ 

Then the properties (13) and (14) imply that  

S(Nj,O:) 1 
~(Nj) > j > l ,  

- 1 0 0 '  - 

T(N,O:) 
- - < 2 0 0 ,  N > I ,  

~(N) 

and (7) and (8) follow. The theorem is proved. | 
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